Your browser doesn't support javascript.
loading
Quantum Sequential Hypothesis Testing.
Martínez Vargas, Esteban; Hirche, Christoph; Sentís, Gael; Skotiniotis, Michalis; Carrizo, Marta; Muñoz-Tapia, Ramon; Calsamiglia, John.
Afiliación
  • Martínez Vargas E; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
  • Hirche C; QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
  • Sentís G; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
  • Skotiniotis M; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
  • Carrizo M; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
  • Muñoz-Tapia R; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
  • Calsamiglia J; Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona) Spain.
Phys Rev Lett ; 126(18): 180502, 2021 May 07.
Article en En | MEDLINE | ID: mdl-34018787
We introduce sequential analysis in quantum information processing, by focusing on the fundamental task of quantum hypothesis testing. In particular, our goal is to discriminate between two arbitrary quantum states with a prescribed error threshold ε when copies of the states can be required on demand. We obtain ultimate lower bounds on the average number of copies needed to accomplish the task. We give a block-sampling strategy that allows us to achieve the lower bound for some classes of states. The bound is optimal in both the symmetric as well as the asymmetric setting in the sense that it requires the least mean number of copies out of all other procedures, including the ones that fix the number of copies ahead of time. For qubit states we derive explicit expressions for the minimum average number of copies and show that a sequential strategy based on fixed local measurements outperforms the best collective measurement on a predetermined number of copies. Whereas for general states the number of copies increases as log1/ε, for pure states sequential strategies require a finite average number of samples even in the case of perfect discrimination, i.e., ε=0.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos