Your browser doesn't support javascript.
loading
An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo.
Sanchez-Aguilera, Alberto; Wheeler, Diek W; Jurado-Parras, Teresa; Valero, Manuel; Nokia, Miriam S; Cid, Elena; Fernandez-Lamo, Ivan; Sutton, Nate; García-Rincón, Daniel; de la Prida, Liset M; Ascoli, Giorgio A.
Afiliación
  • Sanchez-Aguilera A; Instituto Cajal CSIC, Madrid, Spain.
  • Wheeler DW; Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America.
  • Jurado-Parras T; Instituto Cajal CSIC, Madrid, Spain.
  • Valero M; Instituto Cajal CSIC, Madrid, Spain.
  • Nokia MS; NYU Neuroscience Institute, New York, United States of America.
  • Cid E; Instituto Cajal CSIC, Madrid, Spain.
  • Fernandez-Lamo I; Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland.
  • Sutton N; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
  • García-Rincón D; Instituto Cajal CSIC, Madrid, Spain.
  • de la Prida LM; Instituto Cajal CSIC, Madrid, Spain.
  • Ascoli GA; Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America.
PLoS Biol ; 19(5): e3001213, 2021 05.
Article en En | MEDLINE | ID: mdl-33956790
Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipocampo Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos