Your browser doesn't support javascript.
loading
Single-index models with functional connectivity network predictors.
Weaver, Caleb; Xiao, Luo; Lindquist, Martin A.
Afiliación
  • Weaver C; Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27606, USA.
  • Xiao L; Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27606, USA.
  • Lindquist MA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
Biostatistics ; 24(1): 52-67, 2022 12 12.
Article en En | MEDLINE | ID: mdl-33948617
Functional connectivity is defined as the undirected association between two or more functional magnetic resonance imaging (fMRI) time series. Increasingly, subject-level functional connectivity data have been used to predict and classify clinical outcomes and subject attributes. We propose a single-index model wherein response variables and sparse functional connectivity network valued predictors are linked by an unspecified smooth function in order to accommodate potentially nonlinear relationships. We exploit the network structure of functional connectivity by imposing meaningful sparsity constraints, which lead not only to the identification of association of interactions between regions with the response but also the assessment of whether or not the functional connectivity associated with a brain region is related to the response variable. We demonstrate the effectiveness of the proposed model in simulation studies and in an application to a resting-state fMRI data set from the Human Connectome Project to model fluid intelligence and sex and to identify predictive links between brain regions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conectoma / Red Nerviosa Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Biostatistics Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conectoma / Red Nerviosa Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Biostatistics Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido