Your browser doesn't support javascript.
loading
CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury.
Keatinge, Marcus; Tsarouchas, Themistoklis M; Munir, Tahimina; Porter, Nicola J; Larraz, Juan; Gianni, Davide; Tsai, Hui-Hsin; Becker, Catherina G; Lyons, David A; Becker, Thomas.
Afiliación
  • Keatinge M; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Tsarouchas TM; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Munir T; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Porter NJ; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Larraz J; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Gianni D; Biogen, Cambridge, Massachusetts, United States of America.
  • Tsai HH; Biogen, Cambridge, Massachusetts, United States of America.
  • Becker CG; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Lyons DA; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
  • Becker T; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
PLoS Genet ; 17(4): e1009515, 2021 04.
Article en En | MEDLINE | ID: mdl-33914736
Zebrafish exhibit robust regeneration following spinal cord injury, promoted by macrophages that control post-injury inflammation. However, the mechanistic basis of how macrophages regulate regeneration is poorly understood. To address this gap in understanding, we conducted a rapid in vivo phenotypic screen for macrophage-related genes that promote regeneration after spinal injury. We used acute injection of synthetic RNA Oligo CRISPR guide RNAs (sCrRNAs) that were pre-screened for high activity in vivo. Pre-screening of over 350 sCrRNAs allowed us to rapidly identify highly active sCrRNAs (up to half, abbreviated as haCRs) and to effectively target 30 potentially macrophage-related genes. Disruption of 10 of these genes impaired axonal regeneration following spinal cord injury. We selected 5 genes for further analysis and generated stable mutants using haCRs. Four of these mutants (tgfb1a, tgfb3, tnfa, sparc) retained the acute haCR phenotype, validating the approach. Mechanistically, tgfb1a haCR-injected and stable mutant zebrafish fail to resolve post-injury inflammation, indicated by prolonged presence of neutrophils and increased levels of il1b expression. Inhibition of Il-1ß rescues the impaired axon regeneration in the tgfb1a mutant. Hence, our rapid and scalable screening approach has identified functional regulators of spinal cord regeneration, but can be applied to any biological function of interest.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración / ARN Guía de Kinetoplastida / Proteínas de Pez Cebra / Factor de Crecimiento Transformador beta1 / Regeneración de la Medula Espinal Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Animals Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración / ARN Guía de Kinetoplastida / Proteínas de Pez Cebra / Factor de Crecimiento Transformador beta1 / Regeneración de la Medula Espinal Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Animals Idioma: En Revista: PLoS Genet Asunto de la revista: GENETICA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos