Your browser doesn't support javascript.
loading
A small interfering RNA (siRNA) database for SARS-CoV-2.
Medeiros, Inácio Gomes; Khayat, André Salim; Stransky, Beatriz; Santos, Sidney; Assumpção, Paulo; de Souza, Jorge Estefano Santana.
Afiliación
  • Medeiros IG; Bioinformatics Graduate Program, Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-400, Brazil.
  • Khayat AS; Instituto do Cérebro, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil.
  • Stransky B; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil.
  • Santos S; Bioinformatics Multidisciplinary Environment (BioME), Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-400, Brazil.
  • Assumpção P; Biomedical Engineering Department, Center of Technology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil.
  • de Souza JES; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil.
Sci Rep ; 11(1): 8849, 2021 04 23.
Article en En | MEDLINE | ID: mdl-33893357
Coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, for which a demand for developing antivirals capable of targeting the SARS-CoV-2 RNA genome and blocking the activity of its genes has emerged. In this work, we presented a database of SARS-CoV-2 targets for small interference RNA (siRNA) based approaches, aiming to speed the design process by providing a broad set of possible targets and siRNA sequences. The siRNAs sequences are characterized and evaluated by more than 170 features, including thermodynamic information, base context, target genes and alignment information of sequences against the human genome, and diverse SARS-CoV-2 strains, to assess possible bindings to off-target sequences. This dataset is available as a set of four tables, available in a spreadsheet and CSV (Comma-Separated Values) formats, each one corresponding to sequences of 18, 19, 20, and 21 nucleotides length, aiming to meet the diversity of technology and expertise among laboratories around the world. A metadata table (Supplementary Table S1), which describes each feature, is also provided in the aforementioned formats. We hope that this database helps to speed up the development of new target antivirals for SARS-CoV-2, contributing to a possible strategy for a faster and effective response to the COVID-19 pandemic.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ARN Viral / ARN Interferente Pequeño / SARS-CoV-2 / COVID-19 Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ARN Viral / ARN Interferente Pequeño / SARS-CoV-2 / COVID-19 Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido