Your browser doesn't support javascript.
loading
Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases.
Hu, Jingjie; Bourne, Rebecca A; McGrath, Barbara C; Lin, Alice; Pei, Zifei; Cavener, Douglas R.
Afiliación
  • Hu J; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Bourne RA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  • McGrath BC; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Lin A; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Pei Z; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Cavener DR; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address: drc9@psu.edu.
Mol Ther ; 29(11): 3274-3292, 2021 11 03.
Article en En | MEDLINE | ID: mdl-33892188
With the development of CRISPR-Cas9-mediated gene-editing technologies, correction of disease-causing mutations has become possible. However, current gene-correction strategies preclude mutation repair in post-mitotic cells of human tissues, and a unique repair strategy must be designed and tested for each and every mutation that may occur in a gene. We have developed a novel gene-correction strategy, co-opting regulation bypass repair (CRBR), which can repair a spectrum of mutations in mitotic or post-mitotic cells and tissues. CRBR utilizes the non-homologous end joining (NHEJ) pathway to insert a coding sequence (CDS) and transcription/translation terminators targeted upstream of any CDS mutation and downstream of the transcriptional promoter. CRBR results in simultaneous co-option of the endogenous regulatory region and bypass of the genetic defect. We validated the CRBR strategy for human gene therapy by rescuing a mouse model of Wolcott-Rallison syndrome (WRS) with permanent neonatal diabetes caused by either a large deletion or a nonsense mutation in the PERK (EIF2AK3) gene. Additionally, we integrated a CRBR GFP-terminator cassette downstream of the human insulin promoter in cadaver pancreatic islets of Langerhans, which resulted in insulin promoter regulated expression of GFP, demonstrating the potential utility of CRBR in human tissue gene repair.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Terapia Genética / Sistemas CRISPR-Cas / Edición Génica / Enfermedades Genéticas Congénitas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Terapia Genética / Sistemas CRISPR-Cas / Edición Génica / Enfermedades Genéticas Congénitas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos