Your browser doesn't support javascript.
loading
Rebound and scattering of motile Chlamydomonas algae in confined chambers.
Théry, Albane; Wang, Yuxuan; Dvoriashyna, Mariia; Eloy, Christophe; Elias, Florence; Lauga, Eric.
Afiliación
  • Théry A; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk.
  • Wang Y; Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France.
  • Dvoriashyna M; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk.
  • Eloy C; Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France.
  • Elias F; Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France.
  • Lauga E; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk.
Soft Matter ; 17(18): 4857-4873, 2021 May 12.
Article en En | MEDLINE | ID: mdl-33890590
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Chlamydomonas / Chlamydomonas reinhardtii Idioma: En Revista: Soft Matter Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Chlamydomonas / Chlamydomonas reinhardtii Idioma: En Revista: Soft Matter Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido