Your browser doesn't support javascript.
loading
High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows.
Azizgolshani, H; Coppeta, J R; Vedula, E M; Marr, E E; Cain, B P; Luu, R J; Lech, M P; Kann, S H; Mulhern, T J; Tandon, V; Tan, K; Haroutunian, N J; Keegan, P; Rogers, M; Gard, A L; Baldwin, K B; de Souza, J C; Hoefler, B C; Bale, S S; Kratchman, L B; Zorn, A; Patterson, A; Kim, E S; Petrie, T A; Wiellette, E L; Williams, C; Isenberg, B C; Charest, J L.
Afiliación
  • Azizgolshani H; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Coppeta JR; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Vedula EM; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Marr EE; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Cain BP; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Luu RJ; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Lech MP; Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA.
  • Kann SH; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com and Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA.
  • Mulhern TJ; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Tandon V; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Tan K; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Haroutunian NJ; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Keegan P; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Rogers M; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Gard AL; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Baldwin KB; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • de Souza JC; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Hoefler BC; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Bale SS; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Kratchman LB; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Zorn A; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Patterson A; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Kim ES; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Petrie TA; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Wiellette EL; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Williams C; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Isenberg BC; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
  • Charest JL; Draper, 555 Technology Square, Cambridge, MA 02139, USA. jcharest@draper.com.
Lab Chip ; 21(8): 1454-1474, 2021 04 20.
Article en En | MEDLINE | ID: mdl-33881130
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dispositivos Laboratorio en un Chip / Desarrollo de Medicamentos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dispositivos Laboratorio en un Chip / Desarrollo de Medicamentos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido