Your browser doesn't support javascript.
loading
A standard system phantom for magnetic resonance imaging.
Stupic, Karl F; Ainslie, Maureen; Boss, Michael A; Charles, Cecil; Dienstfrey, Andrew M; Evelhoch, Jeffrey L; Finn, Paul; Gimbutas, Zydrunas; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Karaulanov, Todor; Keenan, Kathryn E; Liu, Guoying; Martin, Michele N; Prasad, Pottumarthi V; Rentz, Nikki S; Yuan, Chun; Russek, Stephen E.
Afiliación
  • Stupic KF; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Ainslie M; Department of Radiology, Duke University, Durham, North Carolina, USA.
  • Boss MA; American College of Radiology, Philadelphia, Pennsylvania, USA.
  • Charles C; Department of Radiology, Duke University, Durham, North Carolina, USA.
  • Dienstfrey AM; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Evelhoch JL; Merck Research Laboratories, West Point, Pennsylvania, USA.
  • Finn P; University of California, Los Angeles, California, USA.
  • Gimbutas Z; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Gunter JL; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Hill DLG; Centre for Medical Image Computing, University College London, London, United Kingdom.
  • Jack CR; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Jackson EF; Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.
  • Karaulanov T; CaliberMRI, Inc., Boulder, Colorado, USA.
  • Keenan KE; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Liu G; National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
  • Martin MN; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Prasad PV; Radiology/CAI, NorthShore University HealthSystem, Evanston, Illinois, USA.
  • Rentz NS; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
  • Yuan C; Radiology, University of Washington, Seattle, Washington, USA.
  • Russek SE; Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA.
Magn Reson Med ; 86(3): 1194-1211, 2021 09.
Article en En | MEDLINE | ID: mdl-33847012
PURPOSE: A standard MRI system phantom has been designed and fabricated to assess scanner performance, stability, comparability and assess the accuracy of quantitative relaxation time imaging. The phantom is unique in having traceability to the International System of Units, a high level of precision, and monitoring by a national metrology institute. Here, we describe the phantom design, construction, imaging protocols, and measurement of geometric distortion, resolution, slice profile, signal-to-noise ratio (SNR), proton-spin relaxation times, image uniformity and proton density. METHODS: The system phantom, designed by the International Society of Magnetic Resonance in Medicine ad hoc committee on Standards for Quantitative MR, is a 200 mm spherical structure that contains a 57-element fiducial array; two relaxation time arrays; a proton density/SNR array; resolution and slice-profile insets. Standard imaging protocols are presented, which provide rapid assessment of geometric distortion, image uniformity, T1 and T2 mapping, image resolution, slice profile, and SNR. RESULTS: Fiducial array analysis gives assessment of intrinsic geometric distortions, which can vary considerably between scanners and correction techniques. This analysis also measures scanner/coil image uniformity, spatial calibration accuracy, and local volume distortion. An advanced resolution analysis gives both scanner and protocol contributions. SNR analysis gives both temporal and spatial contributions. CONCLUSIONS: A standard system phantom is useful for characterization of scanner performance, monitoring a scanner over time, and to compare different scanners. This type of calibration structure is useful for quality assurance, benchmarking quantitative MRI protocols, and to transition MRI from a qualitative imaging technique to a precise metrology with documented accuracy and uncertainty.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Tipo de estudio: Qualitative_research Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Tipo de estudio: Qualitative_research Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos