Your browser doesn't support javascript.
loading
Dynamic Impact Surface Damage Analysis of 3D Woven Para-Aramid Armour Panels Using NDI Technique.
Abtew, Mulat Alubel; Boussu, Francois; Bruniaux, Pascal; Hong, Yan.
Afiliación
  • Abtew MA; College of Textile and Clothing Engineering, Soochow University, 178 G.J.D. Road, Suzhou 215021, China.
  • Boussu F; Ethiopian Institute of Textile & Fashion Technology, Bahir Dar University, P.O. Box 1037 Bahir Dar, Ethiopia.
  • Bruniaux P; ENSAIT-GEMTEX Lab, Lille Université, 2 Allée Louise et Victor Champier, 59056 Roubaix, France.
  • Hong Y; ENSAIT-GEMTEX Lab, Lille Université, 2 Allée Louise et Victor Champier, 59056 Roubaix, France.
Polymers (Basel) ; 13(6)2021 Mar 12.
Article en En | MEDLINE | ID: mdl-33809243
The effects of the yarn composition system inside 3D woven high-performance textiles are not well investigated and understood against their final ballistic impact behaviour. The current study aims to examine the ballistic impact performances of armour panels made of different 3D woven fabric variants through postmortem observations. Four high-performance five-layer 3D woven fabric variants were engineered based on their different warp yarn compositions but similar area density. A 50 × 50 cm2 armour system of each variant, which comprises eight nonbonded but aligned panels, namely, 3D-40-8/0 (or 8/0), 3D-40-8/4 (or 8/4), 3D-40-8/8 (or 8/8) and 3D-40-4/8 (or 4/8), were prepared and moulded to resemble female frontal morphology. The armour systems were then tested with nonperforation ballistic impacts according to the National Institute of Justice (NIJ) 0101.06 standard Level-IIIA. Two high-speed cameras were used to capture the event throughout the test. Nondestructive investigation (NDI) using optical microscopic and stereoscopic 3D digital images were employed for the analysis. The armour panels made of the 8/0 and 4/8 fabric variants were perforated, whereas the armour made of the 8/8 and 8/4 fabric variants showed no perforation. Besides, the armour made of the 8/4 fabric variant revealed higher local and global surface displacements than the other armours. The current research findings are useful for further engineering of 3D woven fabric for seamless women's impact protective clothing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza