Your browser doesn't support javascript.
loading
A quantum annealing approach to ionic diffusion in solids.
Utimula, Keishu; Ichibha, Tom; Prayogo, Genki I; Hongo, Kenta; Nakano, Kousuke; Maezono, Ryo.
Afiliación
  • Utimula K; School of Materials Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan. mwkumk1702@icloud.com.
  • Ichibha T; School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
  • Prayogo GI; School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
  • Hongo K; Research Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
  • Nakano K; School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
  • Maezono R; International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
Sci Rep ; 11(1): 7261, 2021 Mar 31.
Article en En | MEDLINE | ID: mdl-33790312
We have developed a framework for using quantum annealing computation to evaluate a key quantity in ionic diffusion in solids, the correlation factor. Existing methods can only calculate the correlation factor analytically in the case of physically unrealistic models, making it difficult to relate microstructural information about diffusion path networks obtainable by current ab initio techniques to macroscopic quantities such as diffusion coefficients. We have mapped the problem into a quantum spin system described by the Ising Hamiltonian. By applying our framework in combination with ab initio technique, it is possible to understand how diffusion coefficients are controlled by temperatures, pressures, atomic substitutions, and other factors. We have calculated the correlation factor in a simple case with a known exact result by a variety of computational methods, including simulated quantum annealing on the spin models, the classical random walk, the matrix description, and quantum annealing on D-Wave with hybrid solver . This comparison shows that all the evaluations give consistent results with each other, but that many of the conventional approaches require infeasible computational costs. Quantum annealing is also currently infeasible because of the cost and scarcity of qubits, but we argue that when technological advances alter this situation, quantum annealing will easily outperform all existing methods.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido