BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development.
Dev Cell
; 56(8): 1182-1194.e6, 2021 04 19.
Article
en En
| MEDLINE
| ID: mdl-33773101
Pyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that PDK family is dispensable for murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC. First, we knocked out all four Pdk genes one by one. Surprisingly, Pdk total KO embryos developed and were born in expected ratios but died by postnatal day 4 because of hypoglycemia or ketoacidosis. Moreover, PDC was phosphorylated in these embryos, suggesting that another kinase compensates for PDK family. Bioinformatic analysis implicated branched-chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched-chain amino acids (BCAAs) catabolism. Indeed, knockout of Bckdk and Pdk family led to the loss of PDC phosphorylation, an increase in PDC activity and pyruvate entry into the TCA cycle, and embryonic lethality. These findings reveal a regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteínas Quinasas
/
Complejo Piruvato Deshidrogenasa
/
Ciclo del Ácido Cítrico
/
Desarrollo Embrionario
/
Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Dev Cell
Asunto de la revista:
EMBRIOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Israel
Pais de publicación:
Estados Unidos