Your browser doesn't support javascript.
loading
Nonparametric goodness-of-fit testing for parametric covariate models in pharmacometric analyses.
Hartung, Niklas; Wahl, Martin; Rastogi, Abhishake; Huisinga, Wilhelm.
Afiliación
  • Hartung N; Institute of Mathematics, Universität Potsdam, Potsdam, Germany.
  • Wahl M; Institute of Mathematics, Humboldt-Universität zu Berlin, Berlin, Germany.
  • Rastogi A; Institute of Mathematics, Universität Potsdam, Potsdam, Germany.
  • Huisinga W; Institute of Mathematics, Universität Potsdam, Potsdam, Germany.
CPT Pharmacometrics Syst Pharmacol ; 10(6): 564-576, 2021 06.
Article en En | MEDLINE | ID: mdl-33755347
The characterization of covariate effects on model parameters is a crucial step during pharmacokinetic/pharmacodynamic analyses. Although covariate selection criteria have been studied extensively, the choice of the functional relationship between covariates and parameters, however, has received much less attention. Often, a simple particular class of covariate-to-parameter relationships (linear, exponential, etc.) is chosen ad hoc or based on domain knowledge, and a statistical evaluation is limited to the comparison of a small number of such classes. Goodness-of-fit testing against a nonparametric alternative provides a more rigorous approach to covariate model evaluation, but no such test has been proposed so far. In this manuscript, we derive and evaluate nonparametric goodness-of-fit tests for parametric covariate models, the null hypothesis, against a kernelized Tikhonov regularized alternative, transferring concepts from statistical learning to the pharmacological setting. The approach is evaluated in a simulation study on the estimation of the age-dependent maturation effect on the clearance of a monoclonal antibody. Scenarios of varying data sparsity and residual error are considered. The goodness-of-fit test correctly identified misspecified parametric models with high power for relevant scenarios. The case study provides proof-of-concept of the feasibility of the proposed approach, which is envisioned to be beneficial for applications that lack well-founded covariate models.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Child / Humans Idioma: En Revista: CPT Pharmacometrics Syst Pharmacol Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Child / Humans Idioma: En Revista: CPT Pharmacometrics Syst Pharmacol Año: 2021 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos