An Open-shell, Luminescent, Two-Dimensional Coordination Polymer with a Honeycomb Lattice and Triangular Organic Radical.
J Am Chem Soc
; 143(11): 4329-4338, 2021 03 24.
Article
en En
| MEDLINE
| ID: mdl-33721501
The use of organic radicals as building blocks is an effective approach to the production of open-shell coordination polymers (CPs). Two-dimensional (2D) CPs with honeycomb spin-lattices have attracted attention because of the unique electronic structures and physical properties afforded by their structural topology. However, radical-based CPs with honeycomb spin-lattices tend to have low chemical stability or poor crystallinity, and thus novel systems with high crystallinity and persistence are in strong demand. In this study, a novel triangular organic radical possessing three pyridyl groups, tris(3,5-dichloro-4-pyridyl)methyl radical (trisPyM) was prepared. It exhibits luminescence, high photostability, and a coordination ability, allowing formation of defined and persistent 2D CPs. Optical measurements confirmed the luminescence of trisPyM both in solution and in the solid state, with emission wavelengths, λem, of 665 and 700 nm, respectively. trisPyM exhibits better chemical stability under photoirradiation than other luminescent radicals: the half-life of trisPyM in CH2Cl2 was 10â¯000 times that of the tris(2,4,6-trichlorophenyl)methyl radical (TTM), a conventional luminescent radical. Complexation between trisPyM and ZnII(hfac)2 yielded a single crystal of a 2D CP trisZn, possessing a honeycomb lattice with graphene-like spin topology. The coordination structure of trisZn is stable under evacuation at 60 °C. Moreover, trisZn exhibits luminescence at 79 K, with λem = 695 nm, and is a rare example of a luminescent material among 2D radical-based CPs. Our results indicate that trisPyM may be a promising building block in the construction of a new class of 2D honeycomb CPs with novel properties, including luminescence.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Estados Unidos