Your browser doesn't support javascript.
loading
Integrated analysis of physiological, transcriptomics and metabolomics provides insights into detoxication disruption of PFOA exposure in Mytilus edulis.
Li, Fengling; Yu, Yongxing; Guo, Mengmeng; Lin, Yao; Jiang, Yanhua; Qu, Meng; Sun, Xiaojie; Li, Zhaoxin; Zhai, Yuxiu; Tan, Zhijun.
Afiliación
  • Li F; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Yu Y; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; College of Marine Life Sciences, Ocean University of China, Qingdao 2660
  • Guo M; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Lin Y; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Jiang Y; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Qu M; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Sun X; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Li Z; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Zhai Y; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
  • Tan Z; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China. Electronic address: Tanzj@ysfri.ac.cn.
Ecotoxicol Environ Saf ; 214: 112081, 2021 May.
Article en En | MEDLINE | ID: mdl-33677383
Perfluorooctanoic acid (PFOA), a persistent environmental contaminant, resists environmental degradation and bioaccumulates in food chains. Lots of literatures have proved that PFOA exposure could disrupt detoxifying function in a variety of organisms, however, it still remained poorly known about this in mollusk. Here, we examined physiological, transcriptomic, and metabolomic responses to PFOA in Mytilus edulis, a model organism frequently used in studies of aquatic pollution. We aimed to characterize PFOA-induced stress responses and detoxification mechanisms. PFOA exposure significantly altered antioxidant enzyme activity levels and the abundances of lipid peroxidation products. In addition, transcriptomic analysis indicated that several genes associated with oxidative stress and detoxication were differentially expressed after PFOA exposure. In combination, transcriptomic and metabolomic analyses showed that PFOA exposure disturbed several metabolic processes in M. edulis, including the lipid metabolism, amino acid metabolism, and carbohydrate metabolism etc. Molecular examination and enzymes assay of PFOA-exposed M. edulis after a 7-day depuration period still did not recover to control levels. The Pathway enrichment analysis proved that several pathways related to detoxification, such as c-Jun N-terminal kinase (JNK) and p38-dependent mitogen-activated protein kinase (MAPK) pathway, Peroxisome proliferator-activated receptor γ (PPARγ) pathway etc, were obviously affected. The present work verifies firstly PFOA disruption to molluscan detoxification and identifies the key pathways to understand the molecular mechanisms thereof. This study provides new insights into the detoxication disruption invoked in response to PFOA exposure in M. edulis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Caprilatos / Mytilus edulis / Fluorocarburos Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Caprilatos / Mytilus edulis / Fluorocarburos Límite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Año: 2021 Tipo del documento: Article Pais de publicación: Países Bajos