Your browser doesn't support javascript.
loading
Reconfigurable photonics with on-chip single-photon detectors.
Gyger, Samuel; Zichi, Julien; Schweickert, Lucas; Elshaari, Ali W; Steinhauer, Stephan; Covre da Silva, Saimon F; Rastelli, Armando; Zwiller, Val; Jöns, Klaus D; Errando-Herranz, Carlos.
Afiliación
  • Gyger S; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden. gyger@kth.se.
  • Zichi J; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Schweickert L; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Elshaari AW; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Steinhauer S; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Covre da Silva SF; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Rastelli A; Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Austria.
  • Zwiller V; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Jöns KD; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Errando-Herranz C; Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden. carloseh@kth.se.
Nat Commun ; 12(1): 1408, 2021 Mar 03.
Article en En | MEDLINE | ID: mdl-33658495
Integrated quantum photonics offers a promising path to scale up quantum optics experiments by miniaturizing and stabilizing complex laboratory setups. Central elements of quantum integrated photonics are quantum emitters, memories, detectors, and reconfigurable photonic circuits. In particular, integrated detectors not only offer optical readout but, when interfaced with reconfigurable circuits, allow feedback and adaptive control, crucial for deterministic quantum teleportation, training of neural networks, and stabilization of complex circuits. However, the heat generated by thermally reconfigurable photonics is incompatible with heat-sensitive superconducting single-photon detectors, and thus their on-chip co-integration remains elusive. Here we show low-power microelectromechanical reconfiguration of integrated photonic circuits interfaced with superconducting single-photon detectors on the same chip. We demonstrate three key functionalities for photonic quantum technologies: 28 dB high-extinction routing of classical and quantum light, 90 dB high-dynamic range single-photon detection, and stabilization of optical excitation over 12 dB power variation. Our platform enables heat-load free reconfigurable linear optics and adaptive control, critical for quantum state preparation and quantum logic in large-scale quantum photonics applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido