Your browser doesn't support javascript.
loading
A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data.
Pless, Evlyn; Saarman, Norah P; Powell, Jeffrey R; Caccone, Adalgisa; Amatulli, Giuseppe.
Afiliación
  • Pless E; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511; espless@ucdavis.edu giuseppe.amatulli@yale.edu.
  • Saarman NP; Department of Anthropology, University of California, Davis, CA 95616.
  • Powell JR; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511.
  • Caccone A; Department of Biology, Utah State University, Logan, UT 84321.
  • Amatulli G; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article en En | MEDLINE | ID: mdl-33619083
Mapping landscape connectivity is important for controlling invasive species and disease vectors. Current landscape genetics methods are often constrained by the subjectivity of creating resistance surfaces and the difficulty of working with interacting and correlated environmental variables. To overcome these constraints, we combine the advantages of a machine-learning framework and an iterative optimization process to develop a method for integrating genetic and environmental (e.g., climate, land cover, human infrastructure) data. We validate and demonstrate this method for the Aedes aegypti mosquito, an invasive species and the primary vector of dengue, yellow fever, chikungunya, and Zika. We test two contrasting metrics to approximate genetic distance and find Cavalli-Sforza-Edwards distance (CSE) performs better than linearized FST The correlation (R) between the model's predicted genetic distance and actual distance is 0.83. We produce a map of genetic connectivity for Ae. aegypti's range in North America and discuss which environmental and anthropogenic variables are most important for predicting gene flow, especially in the context of vector control.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aedes / Ambiente / Interacción Gen-Ambiente / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aedes / Ambiente / Interacción Gen-Ambiente / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2021 Tipo del documento: Article Pais de publicación: Estados Unidos