Your browser doesn't support javascript.
loading
Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142.
Polerecky, Lubos; Masuda, Takako; Eichner, Meri; Rabouille, Sophie; Vancová, Marie; Kienhuis, Michiel V M; Bernát, Gabor; Bonomi-Barufi, Jose; Campbell, Douglas Andrew; Claquin, Pascal; Cervený, Jan; Giordano, Mario; Kotabová, Eva; Kromkamp, Jacco; Lombardi, Ana Teresa; Lukes, Martin; Prásil, Ondrej; Stephan, Susanne; Suggett, David; Zavrel, Tomas; Halsey, Kimberly H.
Afiliación
  • Polerecky L; Department of Earth Sciences, Utrecht University, Utrecht, Netherlands.
  • Masuda T; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Eichner M; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Rabouille S; Max Planck Institute for Marine Microbiology, Bremen, Germany.
  • Vancová M; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France.
  • Kienhuis MVM; Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, Banyuls-sur-mer, France.
  • Bernát G; Institute of Parasitology, Czech Academy of Sciences, Biology Centre, Ceské Budejovice, Czechia.
  • Bonomi-Barufi J; Department of Earth Sciences, Utrecht University, Utrecht, Netherlands.
  • Campbell DA; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Claquin P; Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary.
  • Cervený J; Botany Department, Federal University of Santa Catarina, Campus de Trindade, Florianópolis, Brazil.
  • Giordano M; Department of Biology, Mount Allison University, Sackville, NB, Canada.
  • Kotabová E; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, FRE 2030, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Normandie Université, Esplanade de la Paix, France.
  • Kromkamp J; Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia.
  • Lombardi AT; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Lukes M; STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, College of Sciences, Shantou University, Shantou, China.
  • Prásil O; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Stephan S; NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands.
  • Suggett D; Universidade Federal de São Carlos, São Carlos, Brazil.
  • Zavrel T; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
  • Halsey KH; Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Trebon, Czechia.
Front Microbiol ; 12: 620915, 2021.
Article en En | MEDLINE | ID: mdl-33613489
Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Suiza