Your browser doesn't support javascript.
loading
Determining structural and chemical heterogeneities of surface species at the single-bond limit.
Xu, Jiayu; Zhu, Xiang; Tan, Shijing; Zhang, Yao; Li, Bin; Tian, Yunzhe; Shan, Huan; Cui, Xuefeng; Zhao, Aidi; Dong, Zhenchao; Yang, Jinlong; Luo, Yi; Wang, Bing; Hou, J G.
Afiliación
  • Xu J; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhu X; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Tan S; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. tansj@ustc.edu.cn bwang@ustc.edu.cn jghou@ustc.edu.cn.
  • Zhang Y; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Li B; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Tian Y; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Shan H; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Cui X; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhao A; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Dong Z; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Yang J; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Luo Y; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang B; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. tansj@ustc.edu.cn bwang@ustc.edu.cn jghou@ustc.edu.cn.
  • Hou JG; Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. tansj@ustc.edu.cn bwang@ustc.edu.cn jghou@ustc.edu.cn.
Science ; 371(6531): 818-822, 2021 02 19.
Article en En | MEDLINE | ID: mdl-33602852
The structure determination of surface species has long been a challenge because of their rich chemical heterogeneities. Modern tip-based microscopic techniques can resolve heterogeneities from their distinct electronic, geometric, and vibrational properties at the single-molecule level but with limited interpretation from each. Here, we combined scanning tunneling microscopy (STM), noncontact atomic force microscopy (AFM), and tip-enhanced Raman scattering (TERS) to characterize an assumed inactive system, pentacene on the Ag(110) surface. This enabled us to unambiguously correlate the structural and chemical heterogeneities of three pentacene-derivative species through specific carbon-hydrogen bond breaking. The joint STM-AFM-TERS strategy provides a comprehensive solution for determining chemical structures that are widely present in surface catalysis, on-surface synthesis, and two-dimensional materials.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos