An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses.
Plant Cell
; 33(4): 865-881, 2021 05 31.
Article
en En
| MEDLINE
| ID: mdl-33594406
Wheat (Triticum aestivum) has a large allohexaploid genome. Subgenome-divergent regulation contributed to genome plasticity and the domestication of polyploid wheat. However, the specificity encoded in the wheat genome determining subgenome-divergent spatio-temporal regulation has been largely unexplored. The considerable size and complexity of the genome are major obstacles to dissecting the regulatory specificity. Here, we compared the epigenomes and transcriptomes from a large set of samples under diverse developmental and environmental conditions. Thousands of distal epigenetic regulatory elements (distal-epiREs) were specifically linked to their target promoters with coordinated epigenomic changes. We revealed that subgenome-divergent activity of homologous regulatory elements is affected by specific epigenetic signatures. Subgenome-divergent epiRE regulation of tissue specificity is associated with dynamic modulation of H3K27me3 mediated by Polycomb complex and demethylases. Furthermore, quantitative epigenomic approaches detected key stress responsive cis- and trans-acting factors validated by DNA Affinity Purification and sequencing, and demonstrated the coordinated interplay between epiRE sequence contexts, epigenetic factors, and transcription factors in regulating subgenome divergent transcriptional responses to external changes. Together, this study provides a wealth of resources for elucidating the epiRE regulomics and subgenome-divergent regulation in hexaploid wheat, and gives new clues for interpreting genetic and epigenetic interplay in regulating the benefits of polyploid wheat.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Estrés Fisiológico
/
Triticum
/
Secuencias Reguladoras de Ácidos Nucleicos
/
Epigénesis Genética
Idioma:
En
Revista:
Plant Cell
Asunto de la revista:
BOTANICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido