Your browser doesn't support javascript.
loading
Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models.
Abbaschian, Babak Joze; Sierra-Sosa, Daniel; Elmaghraby, Adel.
Afiliación
  • Abbaschian BJ; Computer Science and Engineering Department, University of Louisville Louisville, KY 40292, USA.
  • Sierra-Sosa D; Computer Science and Engineering Department, University of Louisville Louisville, KY 40292, USA.
  • Elmaghraby A; Computer Science and Engineering Department, University of Louisville Louisville, KY 40292, USA.
Sensors (Basel) ; 21(4)2021 Feb 10.
Article en En | MEDLINE | ID: mdl-33578714
The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human-computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended problem. The current study reviews deep learning approaches for SER with available datasets, followed by conventional machine learning techniques for speech emotion recognition. Ultimately, we present a multi-aspect comparison between practical neural network approaches in speech emotion recognition. The goal of this study is to provide a survey of the field of discrete speech emotion recognition.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza