Your browser doesn't support javascript.
loading
Effects of primary microglia and astrocytes on neural stem cells in in vitro and in vivo models of ischemic stroke.
Wen, Sheng-Jun; Zheng, Xi-Min; Liu, Li-Fen; Li, Na-Na; Mao, Hai-An; Huang, Liang; Yuan, Qiong-Lan.
Afiliación
  • Wen SJ; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Zheng XM; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Liu LF; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Li NN; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Mao HA; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Huang L; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
  • Yuan QL; Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
Neural Regen Res ; 16(9): 1677-1685, 2021 Sep.
Article en En | MEDLINE | ID: mdl-33510055
Transplantation of neural stem cells (NSCs) can protect neurons in animal stroke models; however, their low rates of survival and neuronal differentiation limit their clinical application. Glial niches, an important location of neural stem cells, regulate survival, proliferation and differentiation of neural stem cells. However, the effects of activated glial cells on neural stem cells remain unclear. In the present study, we explored the effects of activated astrocytes and microglia on neural stem cells in vitro stroke models. We also investigated the effects of combined transplantation of neural stem cells and glial cells after stroke in rats. In a Transwell co-culture system, primary cultured astrocytes, microglia or mixed glial cells were exposed to glutamate or H2O2 and then seeded in the upper inserts, while primary neural stem cells were seeded in the lower uncoated wells and cultured for 7 days. Our results showed that microglia were conducive to neurosphere formation and had no effects on apoptosis within neurospheres, while astrocytes and mixed glial cells were conducive to neurosphere differentiation and reduced apoptosis within neurospheres, regardless of their pretreatment. In contrast, microglia and astrocytes induced neuronal differentiation of neural stem cells in differentiation medium, regardless of their pretreatment, with an exception of astrocytes pretreated with H2O2. Rat models of ischemic stroke were established by occlusion of the middle cerebral artery. Three days later, 5 × 105 neural stem cells with microglia or astrocytes were injected into the right lateral ventricle. Neural stem cell/astrocyte-treated rats displayed better improvement of neurological deficits than neural stem cell only-treated rats at 4 days after cell transplantation. Moreover, neural stem cell/microglia-, and neural stem cell/astrocyte-treated rats showed a significant decrease in ischemic volume compared with neural stem cell-treated rats. These findings indicate that microglia and astrocytes exert different effects on neural stem cells, and that co-transplantation of neural stem cells and astrocytes is more conducive to the recovery of neurological impairment in rats with ischemic stroke. The study was approved by the Animal Ethics Committee of Tongji University School of Medicine, China (approval No. 2010-TJAA08220401) in 2010.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Aspecto: Ethics Idioma: En Revista: Neural Regen Res Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Aspecto: Ethics Idioma: En Revista: Neural Regen Res Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: India