Your browser doesn't support javascript.
loading
Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms.
Garrido, Iván; Erazo-Aux, Jorge; Lagüela, Susana; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Pivarciová, Elena; Gargiulo, Gianfranco; Maldague, Xavier; Arias, Pedro.
Afiliación
  • Garrido I; GeoTECH Group, CINTECX, Universidade de Vigo, 36310 Vigo, Spain.
  • Erazo-Aux J; Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Cali 760032, VA, Colombia.
  • Lagüela S; Facultad de Ingeniería, Institución Universitaria Antonio José Camacho, Cali 760046, VA, Colombia.
  • Sfarra S; Department of Cartographic and Terrain Engineering, University of Salamanca, Calle Hornos Caleros, 50, 05003 Ávila, Spain.
  • Ibarra-Castanedo C; Department of Industrial and Information Engineering and Economics (DIIIE), University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio-, I-67100 L'Aquila (AQ), Italy.
  • Pivarciová E; Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada.
  • Gargiulo G; Faculty of Technology, Technical University in Zvolen, Ul. T.G. Masaryka 2117/24, 960 01 Zvolen, Slovakia.
  • Maldague X; Individual Company of Restoration (Gianfranco Gargiulo), Via Tiberio 7b, I-80073 Capri (NA), Italy.
  • Arias P; Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada.
Sensors (Basel) ; 21(3)2021 Jan 22.
Article en En | MEDLINE | ID: mdl-33499344
The monitoring of heritage objects is necessary due to their continuous deterioration over time. Therefore, the joint use of the most up-to-date inspection techniques with the most innovative data processing algorithms plays an important role to apply the required prevention and conservation tasks in each case study. InfraRed Thermography (IRT) is one of the most used Non-Destructive Testing (NDT) techniques in the cultural heritage field due to its advantages in the analysis of delicate objects (i.e., undisturbed, non-contact and fast inspection of large surfaces) and its continuous evolution in both the acquisition and the processing of the data acquired. Despite the good qualitative and quantitative results obtained so far, the lack of automation in the IRT data interpretation predominates, with few automatic analyses that are limited to specific conditions and the technology of the thermographic camera. Deep Learning (DL) is a data processor with a versatile solution for highly automated analysis. Then, this paper introduces the latest state-of-the-art DL model for instance segmentation, Mask Region-Convolution Neural Network (Mask R-CNN), for the automatic detection and segmentation of the position and area of different surface and subsurface defects, respectively, in two different artistic objects belonging to the same family: Marquetry. For that, active IRT experiments are applied to each marquetry. The thermal image sequences acquired are used as input dataset in the Mask R-CNN learning process. Previously, two automatic thermal image pre-processing algorithms based on thermal fundamentals are applied to the acquired data in order to improve the contrast between defective and sound areas. Good detection and segmentation results are obtained regarding state-of-the-art IRT data processing algorithms, which experience difficulty in identifying the deepest defects in the tests. In addition, the performance of the Mask R-CNN is improved by the prior application of the proposed pre-processing algorithms.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza