Your browser doesn't support javascript.
loading
Controlled Release and Photothermal Behavior of Multipurpose Nanocomposite Particles Containing Encapsulated Gold-Decorated Magnetite and 5-FU in Poly(lactide-co-glycolide).
Keyvan Rad, Jaber; Alinejad, Zeinab; Khoei, Samideh; Mahdavian, Ali Reza.
Afiliación
  • Keyvan Rad J; Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran.
  • Alinejad Z; Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran.
  • Khoei S; Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Iran Shahid Hemmat Highway, P.O. Box: 1449614525, Postal Code: 1449614535 Tehran, Iran.
  • Mahdavian AR; Polymer Science Department, Iran Polymer & Petrochemical Institute, 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, P.O. Box: 14965/115, Postal Code: 14977-13115 Tehran, Iran.
ACS Biomater Sci Eng ; 5(9): 4425-4434, 2019 Sep 09.
Article en En | MEDLINE | ID: mdl-33438408
Nowadays, many research studies have been conducted to prepare multidisciplinary probes in drug delivery systems and cancer therapy with high performance and minimum side effects. Here, poly(lactide-co-glycolide) (PLGA) nanocomposite particles containing 5-fluorouracil (5-FU) and gold-decorated magnetite nanoparticles with a raspberry-like morphology were designed and prepared as a novel and anticancer probe. For this reason, Fe3O4 nanoparticles were synthesized by a coprecipitation method and modified with (3-mercaptopropyl) trimethoxysilane for the deposition of gold nanoparticles. Then, they were embedded in the PLGA matrix alone and accompanied by 5-FU with 92 and 88% loading efficiencies, respectively, through a multiple emulsion solvent evaporation method. Chemical structure and composition of the prepared samples in each step were completely characterized by several techniques. The morphology of the nanocomposite particles was assessed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction patterns, and their particle size and colloidal stability after 1 week were evaluated by dynamic light scattering. Because of the coexistence of gold and Fe3O4 nanoparticles, the final probe provided enhanced dual magneto and photothermal responses by increasing the temperature up to 42.7 °C under 5 min external alternating magnetic field and to 42.1 °C within just 1 min near-infrared irradiation at 808 nm. Trypan blue dye exclusion assays showed that they are biocompatible with reasonable toxicity (IC50 of 0.62 mg/mL) with respect to DU145 prostate cancer cells. Drug release profile of the 5-FU-loaded nanocomposite particles demonstrated their controlled release at 37 °C in phosphate-buffered saline solution. These indicate multidisciplinary characteristics of such particles in cancer therapy by photothermal, magnetic hyperthermia, and chemotherapy according to the presence of various active components.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2019 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2019 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Estados Unidos