Your browser doesn't support javascript.
loading
Active Basal Plane Catalytic Activity via Interfacial Engineering for a Finely Tunable Conducting Polymer/MoS2 Hydrogen Evolution Reaction Multilayer Structure.
Xu, Linan; Zhang, Yihe; Feng, Lili; Li, Xin; Cui, Yanying; An, Qi.
Afiliación
  • Xu L; State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
  • Zhang Y; Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.
  • Feng L; State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
  • Li X; Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.
  • Cui Y; Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.
  • An Q; Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.
ACS Appl Mater Interfaces ; 13(1): 734-744, 2021 Jan 13.
Article en En | MEDLINE | ID: mdl-33390014
The fixation of the catalyst interface is an important consideration for the design of practical applications. However, the electronic structure of MoS2 is sensitive to its embedding environment, and the catalytic performance of MoS2 catalysts may be altered significantly by the type of binding agents and interfacial structure. Interfacial engineering is an effective method for designing efficient catalysts, arising from the close contact between different components, which facilitates charge transfer and strong electronic interactions. Here, we have developed a layer-by-layer (LbL) strategy for the preparation of interfacial MoS2-based catalyst structures with two types of conducting polymers on various substrates. We demonstrate how the assembled partners in the LbL structure can significantly impact the electronic structures in MoS2. As the number of bilayers grows, using polypyrrole as a binder remarkably increases the catalytic efficacy as compared to using polyaniline. On the one hand, the ratio of S22- (or S2-), which is related to the remaining active hydrogen evolution reaction (HER) species, is further increased. On the other hand, density functional theory calculations indicate that the interfacial charge transport from the conducting polymers to MoS2 may boost the HER activity of the interfacial structure of the conducting polymer/MoS2 by decreasing the adsorption free energy of the intermediate H* at the S sites in the basal plane of MoS2. The optimized catalytic efficacy of the (conducting polymer/MoS2)n assembly peaks is obtained with 16 assembly cycles. In preparing interfacial catalytic structures, the LbL-based strategy exhibits several key advantages, including the flexibility of choosing assembly partners, the ability to fine-tune the structures with precision at the nanometer scale, and planar homogeneity at the centimeter scale. We expect that this LbL-based catalyst immobilization strategy will contribute to the fundamental understanding of the scalability and control of highly efficient electrocatalysts at the interface for practical applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos