A Novel Thermochemical Metal Halide Treatment for High-Performance Sb2Se3 Photocathodes.
Nanomaterials (Basel)
; 11(1)2020 Dec 28.
Article
en En
| MEDLINE
| ID: mdl-33379229
The fabrication of cost-effective photostable materials with optoelectronic properties suitable for commercial photoelectrochemical (PEC) water splitting represents a complex task. Herein, we present a simple route to produce Sb2Se3 that meets most of the requirements for high-performance photocathodes. Annealing of Sb2Se3 layers in a selenium-containing atmosphere persists as a necessary step for improving device parameters; however, it could complicate industrial processability. To develop a safe and scalable alternative to the selenium physical post-processing, we propose a novel SbCl3/glycerol-based thermochemical treatment for controlling anisotropy, a severe problem for Sb2Se3. Our procedure makes it possible to selectively etch antimony-rich oxyselenide presented in Sb2Se3, to obtain high-quality compact thin films with a favorable morphology, stoichiometric composition, and crystallographic orientation. The treated Sb2Se3 photoelectrode demonstrates a record photocurrent density of about 31 mA cm-2 at -248 mV against the calomel electrode and can thus offer a breakthrough option for industrial solar fuel fabrication.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estonia
Pais de publicación:
Suiza