Nanostructured LiMnO2 with Li3PO4 Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox.
ACS Cent Sci
; 6(12): 2326-2338, 2020 Dec 23.
Article
en En
| MEDLINE
| ID: mdl-33376794
Nanostructured LiMnO2 integrated with Li3PO4 was successfully synthesized by the mechanical milling route and examined as a new series of positive electrode materials for rechargeable lithium batteries. Although uniform mixing at the atomic scale between LiMnO2 and Li3PO4 was not anticipated because of the noncompatibility of crystal structures for both phases, our study reveals that phosphorus ions with excess lithium ions dissolve into nanosize crystalline LiMnO2 as first evidenced by elemental mapping using STEM-EELS combined with total X-ray scattering, solid-state NMR spectroscopy, and a theoretical ab initio study. The integrated phase features a low-crystallinity metastable phase with a unique nanostructure; the phosphorus ion located at the tetrahedral site shares faces with adjacent lithium ions at slightly distorted octahedral sites. This phase delivers a large reversible capacity of â¼320 mA h g-1 as a high-energy positive electrode material in Li cells. The large reversible capacity originated from the contribution from the anionic redox of oxygen coupled with the cationic redox of Mn ions, as evidenced by operando soft XAS spectroscopy, and the superior reversibility of the anionic redox and the suppression of oxygen loss were also found by online electrochemical mass spectroscopy. The improved reversibility of the anionic redox originates from the presence of phosphorus ions associated with the suppression of oxygen dimerization, as supported by a theoretical study. From these results, the mechanistic foundations of nanostructured high-capacity positive electrode materials were established, and further chemical and physical optimization may lead to the development of next-generation electrochemical devices.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Cent Sci
Año:
2020
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Estados Unidos