Your browser doesn't support javascript.
loading
Automatic Classification of Adventitious Respiratory Sounds: A (Un)Solved Problem?
Rocha, Bruno Machado; Pessoa, Diogo; Marques, Alda; Carvalho, Paulo; Paiva, Rui Pedro.
Afiliación
  • Rocha BM; University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal.
  • Pessoa D; University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal.
  • Marques A; Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, 3810-193 Aveiro, Portugal.
  • Carvalho P; Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal.
  • Paiva RP; University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal.
Sensors (Basel) ; 21(1)2020 Dec 24.
Article en En | MEDLINE | ID: mdl-33374363
(1) Background: Patients with respiratory conditions typically exhibit adventitious respiratory sounds (ARS), such as wheezes and crackles. ARS events have variable duration. In this work we studied the influence of event duration on automatic ARS classification, namely, how the creation of the Other class (negative class) affected the classifiers' performance. (2) Methods: We conducted a set of experiments where we varied the durations of the other events on three tasks: crackle vs. wheeze vs. other (3 Class); crackle vs. other (2 Class Crackles); and wheeze vs. other (2 Class Wheezes). Four classifiers (linear discriminant analysis, support vector machines, boosted trees, and convolutional neural networks) were evaluated on those tasks using an open access respiratory sound database. (3) Results: While on the 3 Class task with fixed durations, the best classifier achieved an accuracy of 96.9%, the same classifier reached an accuracy of 81.8% on the more realistic 3 Class task with variable durations. (4) Conclusion: These results demonstrate the importance of experimental design on the assessment of the performance of automatic ARS classification algorithms. Furthermore, they also indicate, unlike what is stated in the literature, that the automatic classification of ARS is not a solved problem, as the algorithms' performance decreases substantially under complex evaluation scenarios.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Ruidos Respiratorios Tipo de estudio: Prognostic_studies Límite: Adult / Child / Female / Humans / Male Idioma: En Revista: Sensors (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Ruidos Respiratorios Tipo de estudio: Prognostic_studies Límite: Adult / Child / Female / Humans / Male Idioma: En Revista: Sensors (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza