Your browser doesn't support javascript.
loading
Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons.
Kennedy, Colin J; Oelker, Eric; Robinson, John M; Bothwell, Tobias; Kedar, Dhruv; Milner, William R; Marti, G Edward; Derevianko, Andrei; Ye, Jun.
Afiliación
  • Kennedy CJ; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Oelker E; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Robinson JM; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Bothwell T; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Kedar D; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Milner WR; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Marti GE; JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA.
  • Derevianko A; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States.
  • Ye J; Department of Physics, University of Nevada, Reno, Nevada 89557, USA.
Phys Rev Lett ; 125(20): 201302, 2020 Nov 13.
Article en En | MEDLINE | ID: mdl-33258619
We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to standard model particles and fields in the mass range of 10^{-16}-10^{-21} eV. The key advantage of this two-part ratio comparison is the differential sensitivity to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques. These results highlight the importance of using the best-performing atomic clocks for fundamental physics applications, as all-optical timescales are increasingly integrated with, and will eventually supplant, existing microwave timescales.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos