Dynamics of microbial stress responses driven by abiotic changes along a temporal gradient in Deception Island, Maritime Antarctica.
Sci Total Environ
; 758: 143671, 2021 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-33248775
Whalers Bay (WB), Deception Island, is an environment that can drastically change its temperature within a few meters. The main forms of life inhabiting this environment are microorganisms, which, due to the high diversity and their adaptive potential, can survive and thrive under harsh stress conditions. However, the genetic potential and mechanisms to cope with fluctuating adverse conditions as well as what extent environmental variations shape the microbial community over the years it is still unknown in Antarctic environments. In this work, sediments collected in a transect in Whalers Bay, Deception Island, during the Austral Summers of 2014, 2015 and 2017 were analyzed using shotgun metagenomics. Sequence data were further processed with the SqueezeMeta tool for assembly, gene prediction, mapping, taxonomic and functional annotations. Results showed that stress-related functions had the influence of temperatures and solar radiation observed in the years of 2015 and 2017. The most differentiated functions were the ones related to oxidative stress, comparing 2014 vs 2015 and 2014 vs 2017. The genes coding for HSP20 and oxidoreductases (nrdH, grxA, korC and korD), as well as the genes clpE, cspL, and operons mtrAB and vicKR, were differentially enriched between the years, most of them found in gram-positive bacteria. The selective pressures of temperature and radiation may have favored the growth of gram-positive bacteria in 2017, with emphasis on Arthrobacter genus. Data gathered in this work showed that temperature and solar radiation could potentially be the primary driving forces shaping the repertoire of stress-response genes for the maintenance of microbial diversity in WB Antarctic sediments.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Microbiota
Idioma:
En
Revista:
Sci Total Environ
Año:
2021
Tipo del documento:
Article
Pais de publicación:
Países Bajos