Your browser doesn't support javascript.
loading
Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation.
Sachl, Radek; Cujová, Sabína; Singh, Vandana; Riegerová, Petra; Kapusta, Peter; Müller, Hans-Michael; Steringer, Julia P; Hof, Martin; Nickel, Walter.
Afiliación
  • Sachl R; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Cujová S; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Singh V; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Riegerová P; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Kapusta P; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Müller HM; Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69 120 Heidelberg, Germany.
  • Steringer JP; Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69 120 Heidelberg, Germany.
  • Hof M; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3 182 23 Prague, Czech Republic.
  • Nickel W; Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69 120 Heidelberg, Germany.
Anal Chem ; 92(22): 14861-14866, 2020 11 17.
Article en En | MEDLINE | ID: mdl-33198473
In-membrane oligomerization is decisive for the function (or dysfunction) of many proteins. Techniques were developed to characterize membrane-inserted oligomers and the hereby obtained oligomerization states were intuitively related to the function of these proteins. However, in many cases, it is unclear whether the obtained oligomerization states are functionally relevant or are merely the consequence of nonspecific aggregation. Using fibroblast growth factor 2 (FGF2) as a model system, we addressed this methodological challenge. FGF2 oligomerizes in a PI(4,5)P2-dependent manner at the inner plasma membrane leaflet. This process results in membrane insertion and the formation of a lipidic membrane pore, the key intermediate in unconventional secretion of FGF2. To tackle the problem of discriminating functional oligomers from irrelevant aggregates, we present a statistical single molecule and single vesicle assay determining the brightness of individually diffusing in-membrane oligomers and correlating their oligomerization state with membrane pore formation. Importantly, time-dependent membrane pore formation was analyzed with an ensemble of single vesicles providing detailed statistics. Our findings demonstrate that quantifying oligomeric states alone does not allow for a deep understanding of the structure-function relationship of membrane-inserted oligomers.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Membrana Celular / Multimerización de Proteína Tipo de estudio: Prognostic_studies Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: República Checa Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Membrana Celular / Multimerización de Proteína Tipo de estudio: Prognostic_studies Idioma: En Revista: Anal Chem Año: 2020 Tipo del documento: Article País de afiliación: República Checa Pais de publicación: Estados Unidos