Your browser doesn't support javascript.
loading
Estimation of global tropical cyclone wind speed probabilities using the STORM dataset.
Bloemendaal, Nadia; de Moel, Hans; Muis, Sanne; Haigh, Ivan D; Aerts, Jeroen C J H.
Afiliación
  • Bloemendaal N; Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands. nadia.bloemendaal@vu.nl.
  • de Moel H; Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
  • Muis S; Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
  • Haigh ID; Deltares, 2600 MH, Delft, The Netherlands.
  • Aerts JCJH; School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, United Kingdom.
Sci Data ; 7(1): 377, 2020 11 10.
Article en En | MEDLINE | ID: mdl-33173043
Tropical cyclones (TC) are one of the deadliest and costliest natural disasters. To mitigate the impact of such disasters, it is essential to know extreme exceedance probabilities, also known as return periods, of TC hazards. In this paper, we demonstrate the use of the STORM dataset, containing synthetic TCs equivalent of 10,000 years under present-day climate conditions, for the calculation of TC wind speed return periods. The temporal length of the STORM dataset allows us to empirically calculate return periods up to 10,000 years without fitting an extreme value distribution. We show that fitting a distribution typically results in higher wind speeds compared to their empirically derived counterparts, especially for return periods exceeding 100-yr. By applying a parametric wind model to the TC tracks, we derive return periods at 10 km resolution in TC-prone regions. The return periods are validated against observations and previous studies, and show a good agreement. The accompanying global-scale wind speed return period dataset is publicly available and can be used for high-resolution TC risk assessments.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Data Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Data Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido