Your browser doesn't support javascript.
loading
Strongly Quantum-Confined Blue-Emitting Excitons in Chemically Configurable Multiquantum Wells.
Yao, Kaiyuan; Collins, Mary S; Nell, Kara M; Barnard, Edward S; Borys, Nicholas J; Kuykendall, Tevye; Hohman, J Nathan; Schuck, P James.
Afiliación
  • Yao K; Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
  • Collins MS; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Nell KM; Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720 United States.
  • Barnard ES; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Borys NJ; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Kuykendall T; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Hohman JN; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Schuck PJ; Department of Physics, Montana State University, Bozeman, Montana 59717, United States.
ACS Nano ; 15(3): 4085-4092, 2021 Mar 23.
Article en En | MEDLINE | ID: mdl-33166467
Light matter interactions are greatly enhanced in two-dimensional (2D) semiconductors because of strong excitonic effects. Many optoelectronic applications would benefit from creating stacks of atomically thin 2D semiconductors separated by insulating barrier layers, forming multiquantum-well structures. However, most 2D transition metal chalcogenide systems require serial stacking to create van der Waals multilayers. Hybrid metal organic chalcogenolates (MOChas) are self-assembling hybrid materials that combine multiquantum-well properties with scalable chemical synthesis and air stability. In this work, we use spatially resolved linear and nonlinear optical spectroscopies over a range of temperatures to study the strongly excitonic optical properties of mithrene, that is, silver benzeneselenolate, and its synthetic isostructures. We experimentally probe s-type bright excitons and p-type excitonic dark states formed in the quantum confined 2D inorganic monolayers of silver selenide with exciton binding energy up to ∼0.4 eV, matching recent theoretical predictions of the material class. We further show that mithrene's highly efficient blue photoluminescence, ultrafast exciton radiative dynamics, as well as flexible tunability of molecular structure and optical properties demonstrate great potential of MOChas for constructing optoelectronic and quantum excitonic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos