Electrochemical oxidation of aniline using Ti/RuO2-SnO2 and Ti/RuO2-IrO2 as anode.
Chemosphere
; 269: 128734, 2021 Apr.
Article
en En
| MEDLINE
| ID: mdl-33143899
Electrocatalytic properties of anode and the electrolyte composition are important parameters influence the degradation efficiency for aniline wastewater. Ti/RuO2-SnO2 and Ti/RuO2-IrO2 have been fabricated using thermal decomposition method and experiments in electrolyte containing 0.05 M Na2SO4, 0.05 M NaCl and 0.05 M Na2SO4+0.005 M FeSO4 at different current density were conducted to study the influence on aniline degradation. Linear sweep voltammetry (LSV) showed that Ti/RuO2-SnO2 had higher oxygen evolution potential and degrade aniline through electrochemical transformation and electrochemical combustion while Ti/RuO2-IrO2 degrade aniline mainly through electrochemical transformation. The study showed that Ti/RuO2-SnO2 had higher electrocatalytic activity towards the degradation of aniline than Ti/RuO2-IrO2 anode in 0.05 M Na2SO4 and in 0.05 M NaCl electrolyte. The maximum TOC removal efficiency for Ti/RuO2-SnO2 was 64.2% at 40 mA cm-2 in Na2SO4 electrolyte while the average MCE was 1.6% and the average ECTOC was 1.51 kWh (g TOC)-1. On the contrary, the maximum TOC removal efficiency for Ti/RuO2-IrO2 was 63.1% at 40 mA cm-2 in NaCl electrolyte while the average MCE was 1.6% and the average ECTOC was 1.95 kWh (g TOC)-1. The presence of Fe2+ in Na2SO4 electrolyte would decrease the TOC removal efficiency except at low current density (20 mA cm-2) for Ti/RuO2-SnO2. These results indicated that Ti/RuO2-SnO2 and Ti/RuO2-IrO2 anode were suitable in Na2SO4 and NaCl electrolyte, respectively, while the presence of Fe2+ would inhibit aniline degradation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Titanio
/
Contaminantes Químicos del Agua
Idioma:
En
Revista:
Chemosphere
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido