Your browser doesn't support javascript.
loading
Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant.
Hawkins, Nicole A; Misra, Sunita N; Jurado, Manuel; Kang, Seok Kyu; Vierra, Nicholas C; Nguyen, Kimberly; Wren, Lisa; George, Alfred L; Trimmer, James S; Kearney, Jennifer A.
Afiliación
  • Hawkins NA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
  • Misra SN; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America; Ann & Robert H. Lurie Children's Hospital of Chicago Chicago, IL 60611, United States of America.
  • Jurado M; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
  • Kang SK; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
  • Vierra NC; Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America; Department of preceding Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
  • Nguyen K; Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America.
  • Wren L; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
  • George AL; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America.
  • Trimmer JS; Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States of America; Department of preceding Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
  • Kearney JA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America. Electronic address: jennifer.kearney@northwestern.edu.
Neurobiol Dis ; 147: 105141, 2021 01.
Article en En | MEDLINE | ID: mdl-33132203
Developmental and epileptic encephalopathies (DEE) are a group of severe epilepsies that usually present with intractable seizures, developmental delay, and often have elevated risk for premature mortality. Numerous genes have been identified as a monogenic cause of DEE, including KCNB1. The voltage-gated potassium channel KV2.1, encoded by KCNB1, is primarily responsible for delayed rectifier potassium currents that are important regulators of excitability in electrically excitable cells, including neurons. In addition to its canonical role as a voltage-gated potassium conductance, KV2.1 also serves a highly conserved structural function organizing endoplasmic reticulum-plasma membrane junctions clustered in the soma and proximal dendrites of neurons. The de novo pathogenic variant KCNB1-p.G379R was identified in an infant with epileptic spasms, and atonic, focal and tonic-clonic seizures that were refractory to treatment with standard antiepileptic drugs. Previous work demonstrated deficits in potassium conductance, but did not assess non-conducting functions. To determine if the G379R variant affected KV2.1 clustering at endoplasmic reticulum-plasma membrane junctions, KV2.1-G379R was expressed in HEK293T cells. KV2.1-G379R expression did not induce formation of endoplasmic reticulum-plasma membrane junctions, and co-expression of KV2.1-G379R with KV2.1-wild-type lowered induction of these structures relative to KV2.1-WT alone, consistent with a dominant negative effect. To model this variant in vivo, we introduced Kcnb1G379R into mice using CRISPR/Cas9 genome editing. We characterized neuronal expression, neurological and neurobehavioral phenotypes of Kcnb1G379R/+ (Kcnb1R/+) and Kcnb1G379R/G379R (Kcnb1R/R) mice. Immunohistochemistry studies on brains from Kcnb1+/+, Kcnb1R/+ and Kcnb1R/R mice revealed genotype-dependent differences in the expression levels of KV2.1 protein, as well as associated KV2.2 and AMIGO-1 proteins. Kcnb1R/+ and Kcnb1R/R mice displayed profound hyperactivity, repetitive behaviors, impulsivity and reduced anxiety. Spontaneous seizures were observed in Kcnb1R/R mice, as well as seizures induced by exposure to novel environments and/or handling. Both Kcnb1R/+ and Kcnb1R/R mutants were more susceptible to proconvulsant-induced seizures. In addition, both Kcnb1R/+ and Kcnb1R/R mice exhibited abnormal interictal EEG activity, including isolated spike and slow waves. Overall, the Kcnb1G379R mice recapitulate many features observed in individuals with DEE due to pathogenic variants in KCNB1. This new mouse model of KCNB1-associated DEE will be valuable for improving the understanding of the underlying pathophysiology and will provide a valuable tool for the development of therapies to treat this pharmacoresistant DEE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Animales de Enfermedad / Canales de Potasio Shab / Síndromes Epilépticos Límite: Animals / Humans Idioma: En Revista: Neurobiol Dis Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Animales de Enfermedad / Canales de Potasio Shab / Síndromes Epilépticos Límite: Animals / Humans Idioma: En Revista: Neurobiol Dis Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos