Your browser doesn't support javascript.
loading
Asymmetric Stratification-Induced Polarity Loss and Coordinated Individual Cell Movements Drive Directional Migration of Vertebrate Epithelium.
Lu, Yunzhe; Deng, Ruolan; You, Huanyang; Xu, Yishu; Antos, Christopher; Sun, Jianlong; Klein, Ophir D; Lu, Pengfei.
Afiliación
  • Lu Y; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Deng R; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
  • You H; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
  • Xu Y; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Antos C; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Sun J; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Klein OD; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA 94143-0422, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
  • Lu P; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. Electronic address: lvpf@shanghaitech.edu.cn.
Cell Rep ; 33(2): 108246, 2020 10 13.
Article en En | MEDLINE | ID: mdl-33053348
Collective migration is essential for development, wound repair, and cancer metastasis. For most collective systems, "leader cells" determine both the direction and the power of the migration. It has remained unclear, however, how the highly polarized vertebrate epithelium migrates directionally during branching morphogenesis. We show here that, unlike in other systems, front-rear polarity of the mammary epithelium is set up by preferential cell proliferation in the front in response to the FGF10 gradient. This leads to frontal stratification, loss of apicobasal polarity, and leader cell formation. Leader cells are a dynamic population and move faster and more directionally toward the FGF10 signal than do follower cells, partly because of their intraepithelial protrusions toward the signal. Together, our data show that directional migration of the mammary epithelium is a unique multistep process and that, despite sharing remarkable cellular and molecular similarities, vertebrate and invertebrate epithelial branching are fundamentally distinct processes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vertebrados / Movimiento Celular / Polaridad Celular / Epitelio Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vertebrados / Movimiento Celular / Polaridad Celular / Epitelio Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Rep Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos