Your browser doesn't support javascript.
loading
Non-equilibrium chiral domain wall dynamics excited by transverse magnetic field pulses.
Cho, Jaehun; Kim, Kyoung-Whan; Lee, Myoung-Jae; Lee, Hyeon-Jun; Kim, June-Seo.
Afiliación
  • Cho J; Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
  • Kim KW; Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
  • Lee MJ; Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
  • Lee HJ; Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
  • Kim JS; Division of Nanotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
J Phys Condens Matter ; 33(1): 015803, 2021 Jan 06.
Article en En | MEDLINE | ID: mdl-33052891
Non-equilibrium domain wall dynamics on a perpendicularly magnetized nanowire manipulated by the transverse magnetic field pulse are numerically investigated. We systematically observe the large displacements of the chiral domain wall and the domain wall tilting angles generated by Dzyaloshinskii-Moriya interaction during the competition between the precession torque and the magnetic damping process. The magnetic-property-dependent domain wall displacements exhibit that the lower magnetic damping constants and Dzyaloshinskii-Moriya energy densities generate the longer transition times and the significant larger domain wall displacements for the non-equilibrium magnetization dynamics. Compare with the spin-polarized-current-driven domain wall dynamics, the transverse magnetic field pulses guarantee faster domain wall movements without Walker breakdown and lower energy consumptions because it is free from the serious Joule heating issue. Finally, we demonstrate successive chiral domain wall displacements, which are necessary to develop multilevel resistive memristors for next-generation artificial intelligent devices based on magnetic domain wall motions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2021 Tipo del documento: Article Pais de publicación: Reino Unido