Your browser doesn't support javascript.
loading
A multi-stage emergency supplies pre-allocation approach for freeway black spots: A Chinese case study.
Luan, Siliang; Yang, Qingfang; Jiang, Zhongtai; Wang, Wei; Chen, Chao.
Afiliación
  • Luan S; School of Transportation, Jilin University, Changchun, P. R. China.
  • Yang Q; Jilin Research Center for Intelligent Transportation System, Changchun, P. R. China.
  • Jiang Z; School of Transportation, Jilin University, Changchun, P. R. China.
  • Wang W; Jilin Research Center for Intelligent Transportation System, Changchun, P. R. China.
  • Chen C; School of Transportation, Jilin University, Changchun, P. R. China.
PLoS One ; 15(10): e0240372, 2020.
Article en En | MEDLINE | ID: mdl-33031429
This study presents a multi-stage random regret minimization (RRM) model as an emergency rescue decision support system to determine the emergency resource pre-allocation schedule for the freeway network. The proposed methodology consists of three steps: (1) improved accident frequency approach to identify the black spots on the freeway network, (2) stochastic programming (SP) model to determine the initial allocation plan sets, and (3) regret-based model in the logarithmical specification to select the most minimal regret one considering the factors of the response time, total cost and demand. The model is applied to the case study of 2014-2016 freeway network in Shandong, China. The results show that the random regret minimization (RRM) model can improve the full-compensation of SP model to a certain degree. RRM in logarithmical specification performs lightly better than random utility maximization (RUM) and RRM in the linear-additive specification in this case. This approach emerges as a valuable tool to help decision makers to allocate resources before traffic accident occurs, with the aim of minimizing the total regret of their decisions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Accidentes de Tránsito / Asignación de Recursos Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Accidentes de Tránsito / Asignación de Recursos Tipo de estudio: Prognostic_studies Límite: Humans País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos