Your browser doesn't support javascript.
loading
Multimodal Vigilance Estimation Using Deep Learning.
IEEE Trans Cybern ; 52(5): 3097-3110, 2022 May.
Article en En | MEDLINE | ID: mdl-33027022
The phenomenon of increasing accidents caused by reduced vigilance does exist. In the future, the high accuracy of vigilance estimation will play a significant role in public transportation safety. We propose a multimodal regression network that consists of multichannel deep autoencoders with subnetwork neurons (MCDAE sn ). After we define two thresholds of "0.35" and "0.70" from the percentage of eye closure, the output values are in the continuous range of 0-0.35, 0.36-0.70, and 0.71-1 representing the awake state, the tired state, and the drowsy state, respectively. To verify the efficiency of our strategy, we first applied the proposed approach to a single modality. Then, for the multimodality, since the complementary information between forehead electrooculography and electroencephalography features, we found the performance of the proposed approach using features fusion significantly improved, demonstrating the effectiveness and efficiency of our method.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vigilia / Aprendizaje Profundo Idioma: En Revista: IEEE Trans Cybern Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vigilia / Aprendizaje Profundo Idioma: En Revista: IEEE Trans Cybern Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos