Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-ß/Smad2/3 pathway intensification and antifibrotic TGF-ß/Smad1/5/(8)9 pathway impairment.
Sci Rep
; 10(1): 16492, 2020 10 05.
Article
en En
| MEDLINE
| ID: mdl-33020537
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-ß1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-ß1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-ß/Smad2/3 and the antifibrotic TGF-ß/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-ß-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-ß1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-ß/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-ß/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-ß/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Asma
/
Transducción de Señal
/
Factor de Crecimiento Transformador beta
/
Proteínas Smad Reguladas por Receptores
/
Miofibroblastos
/
Fibroblastos
Tipo de estudio:
Observational_studies
Límite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Sci Rep
Año:
2020
Tipo del documento:
Article
País de afiliación:
Polonia
Pais de publicación:
Reino Unido