Your browser doesn't support javascript.
loading
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.
Abbott, B P; Abbott, R; Abbott, T D; Abraham, S; Acernese, F; Ackley, K; Adams, C; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, G; Allocca, A; Aloy, M A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Angelova, S V; Antier, S; Appert, S; Arai, K; Arai, Koya; Arai, Y; Araki, S; Araya, A; Araya, M C; Areeda, J S; Arène, M; Aritomi, N; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Aso, Y; Aston, S M; Astone, P; Aubin, F; Aufmuth, P; AultONeal, K; Austin, C; Avendano, V.
Afiliación
  • Abbott BP; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Abbott R; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Abbott TD; Louisiana State University, Baton Rouge, LA 70803 USA.
  • Abraham S; Inter-University Centre for Astronomy and Astrophysics, Pune, 411007 India.
  • Acernese F; Università di Salerno, 84084 Fisciano, Salerno, Italy.
  • Ackley K; INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, 80126 Napoli, Italy.
  • Adams C; OzGrav, School of Physics and Astronomy, Monash University, Clayton, VIC 3800 Australia.
  • Adya VB; LIGO Livingston Observatory, Livingston, LA 70754 USA.
  • Affeldt C; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 30167 Hannover, Germany.
  • Agathos M; Leibniz Universität Hannover, 30167 Hannover, Germany.
  • Agatsuma K; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 30167 Hannover, Germany.
  • Aggarwal N; Leibniz Universität Hannover, 30167 Hannover, Germany.
  • Aguiar OD; University of Cambridge, Cambridge, CB2 1TN UK.
  • Aiello L; University of Birmingham, Birmingham, B15 2TT UK.
  • Ain A; LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
  • Ajith P; Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo Brazil.
  • Akutsu T; Gran Sasso Science Institute (GSSI), 67100 L'Aquila, Italy.
  • Allen G; INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy.
  • Allocca A; Inter-University Centre for Astronomy and Astrophysics, Pune, 411007 India.
  • Aloy MA; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, 560089 India.
  • Altin PA; National Astronomical Observatory of Japan (NAOJ), 2-21-1,Osawa, Mitaka-shi, Tokyo 181-8588 Japan.
  • Amato A; NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Ananyeva A; Università di Pisa, 56127 Pisa, Italy.
  • Anderson SB; INFN, Sezione di Pisa, 56127 Pisa, Italy.
  • Anderson WG; Departamento de Astronomía y Astrofísica, Universitat de València, 46100 Burjassot, València Spain.
  • Ando M; OzGrav, Australian National University, Canberra, ACT 0200 Australia.
  • Angelova SV; Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, 69622 Villeurbanne, France.
  • Antier S; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Appert S; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Arai K; University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA.
  • Arai K; Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.
  • Arai Y; Research Center for the Early Universe (RESCEU), The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.
  • Araki S; SUPA, University of Strathclyde, Glasgow, G1 1XQ UK.
  • Araya A; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay, France.
  • Araya MC; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Areeda JS; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Arène M; Institute for Cosmic Ray Research (ICRR), The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582 Japan.
  • Aritomi N; Institute for Cosmic Ray Research (ICRR), The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582 Japan.
  • Arnaud N; Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba-shi, Ibaraki 305-0801 Japan.
  • Arun KG; Earthquake Research Institute, The University of Tokyo, 1-1-1,Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan.
  • Ascenzi S; LIGO, California Institute of Technology, Pasadena, CA 91125 USA.
  • Ashton G; California State University Fullerton, Fullerton, CA 92831 USA.
  • Aso Y; APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13, France.
  • Aston SM; Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.
  • Astone P; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay, France.
  • Aubin F; European Gravitational Observatory (EGO), 56021 Cascina, Pisa, Italy.
  • Aufmuth P; Chennai Mathematical Institute, Chennai, 603103 India.
  • AultONeal K; Università di Roma Tor Vergata, 00133 Rome, Italy.
  • Austin C; INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy.
  • Avendano V; OzGrav, School of Physics and Astronomy, Monash University, Clayton, VIC 3800 Australia.
Living Rev Relativ ; 23(1): 3, 2020.
Article en En | MEDLINE | ID: mdl-33015351
We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star-black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1 - 1 + 12 ( 10 - 10 + 52 ) for binary neutron star mergers, of 0 - 0 + 19 ( 1 - 1 + 91 ) for neutron star-black hole mergers, and 17 - 11 + 22 ( 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Living Rev Relativ Año: 2020 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Living Rev Relativ Año: 2020 Tipo del documento: Article Pais de publicación: Suiza