Your browser doesn't support javascript.
loading
Quantifying the usage of small public spaces using deep convolutional neural network.
Hou, Jingxuan; Chen, Long; Zhang, Enjia; Jia, Haifeng; Long, Ying.
Afiliación
  • Hou J; School of Architecture, Tsinghua University, Beijing, China.
  • Chen L; School of Architecture, Tsinghua University, Beijing, China.
  • Zhang E; School of Architecture, Tsinghua University, Beijing, China.
  • Jia H; Department of Environmental Planning and Management, Tsinghua University, Beijing, China.
  • Long Y; School of Architecture and Hang Lung Center for Real Estate, Tsinghua University, Beijing, China.
PLoS One ; 15(10): e0239390, 2020.
Article en En | MEDLINE | ID: mdl-33006974
Small public spaces are the key built environment elements that provide venues for various of activities. However, existing measurements or approaches could not efficiently and effectively quantify how small public spaces are being used. In this paper, we utilized a deep convolutional neural network to quantify the usage of small public spaces through recorded videos as a reliable and robust method to bridge the literature gap. To start with, we deployed photographic devices to record videos that cover the minimum enclosing square of a small public space for a certain period of time, then utilized a deep convolutional neural network to detect people in these videos and converted their location from image-based position to real-world projected coordinates. To validate the accuracy and robustness of the method, we experimented our approach in a residential community in Beijing, and our results confirmed that the usage of small public spaces could be measured and quantified effectively and efficiently.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Características de la Residencia / Ambiente / Aprendizaje Profundo Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Características de la Residencia / Ambiente / Aprendizaje Profundo Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos