Your browser doesn't support javascript.
loading
Bayesian modeling of COVID-19 cases with a correction to account for under-reported cases.
de Oliveira, Anderson Castro Soares; Morita, Lia Hanna Martins; da Silva, Eveliny Barroso; Zardo, Luiz André Ribeiro; Fontes, Cor Jesus Fernandes; Granzotto, Daniele Cristina Tita.
Afiliación
  • de Oliveira ACS; Departamento de Estatística, Universidade Federal de Mato Grosso - UFMT, CEP: 78060-900, Cuiabá, MT, Brazil.
  • Morita LHM; Departamento de Estatística, Universidade Federal de Mato Grosso - UFMT, CEP: 78060-900, Cuiabá, MT, Brazil.
  • da Silva EB; Departamento de Estatística, Universidade Federal de Mato Grosso - UFMT, CEP: 78060-900, Cuiabá, MT, Brazil.
  • Zardo LAR; Departamento de Estatística, Universidade Federal de Mato Grosso - UFMT, CEP: 78060-900, Cuiabá, MT, Brazil.
  • Fontes CJF; Faculdade de Medicina, Universidade Federal de Mato Grosso - UFMT, CEP: 78060-900, Cuiabá, MT, Brazil.
  • Granzotto DCT; Departamento de Estatística, Universidade Estadual de Maringá - UEM, CEP: 87020-900, Maringá, PR, Brazil.
Infect Dis Model ; 5: 699-713, 2020.
Article en En | MEDLINE | ID: mdl-32995681
The novel of COVID-19 disease started in late 2019 making the worldwide governments came across a high number of critical and death cases, beyond constant fear of the collapse in their health systems. Since the beginning of the pandemic, researchers and authorities are mainly concerned with carrying out quantitative studies (modeling and predictions) overcoming the scarcity of tests that lead us to under-reporting cases. To address these issues, we introduce a Bayesian approach to the SIR model with correction for under-reporting in the analysis of COVID-19 cases in Brazil. The proposed model was enforced to obtain estimates of important quantities such as the reproductive rate and the average infection period, along with the more likely date when the pandemic peak may occur. Several under-reporting scenarios were considered in the simulation study, showing how impacting is the lack of information in the modeling.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Infect Dis Model Año: 2020 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Infect Dis Model Año: 2020 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: China