Your browser doesn't support javascript.
loading
Noninvasive characterization (EPR, µCT, NMR) of 3D PLA electrospun fiber sponges for controlled drug delivery.
Zech, Johanna; Mader, Michael; Gündel, Daniel; Metz, Hendrik; Odparlik, Andreas; Agarwal, Seema; Mäder, Karsten; Greiner, Andreas.
Afiliación
  • Zech J; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle (Saale) 06120, Germany.
  • Mader M; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.
  • Gündel D; Department of Nuclear Medicine, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle (Saale) 06120, Germany.
  • Metz H; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle (Saale) 06120, Germany.
  • Odparlik A; Department of Nuclear Medicine, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle (Saale) 06120, Germany.
  • Agarwal S; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.
  • Mäder K; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle (Saale) 06120, Germany.
  • Greiner A; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.
Int J Pharm X ; 2: 100055, 2020 Dec.
Article en En | MEDLINE | ID: mdl-32984812
Highly porous 3D-scaffolds, made from cut, electrospun PLA fibers, are relatively new and promising systems for controlled drug-delivery applications. Because knowledge concerning fundamental processes of drug delivery from those scaffolds is limited, we noninvasively characterized drug-loading and drug-release mechanisms of these polymer-fiber sponges (PFS). We screened simplified PFS-implantation scenarios with EPR and µCT to quantify and 3D-visualize the absorption of model-biofluids and an oil, a possible drug-loading liquid. Saturation of PFS (6 × 8 mm, h x d) is governed by the high hydrophobicity of the material and air-entrapment. It required up to 45 weeks for phosphate-buffered saline and 11 weeks for a more physiological, surface-active protein-solution, indicating the slow fluid-uptake of PFS as an effective mechanism to substantially prolong the release of a drug incorporated within the scaffold. Medium-chain triglycerides, as a good wetting liquid, saturated PFS within seconds, suggesting PFS potential to serve as carrier-vessels for immobilizing hydrophobic drug-solutions to define a liquid's 3D-interface. Oil-retention under mechanical stress was therefore investigated. 1H NMR permitted insights into PFS-oil interaction, confirming surface-relaxation and restricted diffusion; both did not influence drug release from oil-loaded PFS. Results facilitate better understanding of PFS and their potential use in drug delivery.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Pharm X Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Pharm X Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos