Starch bio-template synthesis of W-doped CeO2 catalyst for selective catalytic reduction of NOx with NH3: influence of ignition temperature.
Environ Sci Pollut Res Int
; 28(5): 5914-5926, 2021 Feb.
Article
en En
| MEDLINE
| ID: mdl-32979181
A novel tungsten-doped CeO2 catalyst was fabricated via the sweet potato starch bio-template spread self-combustion (SSC) method to secure a high NH3-SCR activity. The study focuses on the influence of ignition temperature on the physical structure and redox properties of the synthesized catalyst and the catalytic performance of NOx reduction with NH3. These were quantitatively examined by conducting TG-DSC measurements of the starch gel, XRD analysis for the crystallites, SEM and TEM assessments for the morphology of the catalyst, XPS and H2-TPR measurements for the distribution of cerium and tungsten, and NH3-TPD assessments for the acidity of the catalyst. It is found that the ignition temperature shows an important role in the interaction of cerium and tungsten species, and the optimal ignition temperature is 500 °C. The increase of ignition temperature from 150 °C is beneficial to the interactions of species in the catalyst, depresses the formation of WO3, and refines the cubic CeO2 crystallite. The sample ignited at 500 °C shows the biggest BET surface area, the highest surface concentration of Ce species and molar ratio of Ce3+/(Ce3++Ce4+), and the most abundant surface Brønsted acid sites, which are the possible reasons for the superiority of the NH3-SCR activity. With a high GHSV of 200,000 mL (g h)-1 and the optimal ignition temperature, Ce4W2Oz-500 can achieve a steadily high NOx reduction of 80% or more at a lowered reduction temperature in the range of 250~500 °C.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Cerio
/
Amoníaco
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania