Mineralization induced by phosphorylated dry baker's yeast.
PLoS One
; 15(9): e0239774, 2020.
Article
en En
| MEDLINE
| ID: mdl-32976506
We found the mineralization of Cu during long-term Cu2+ adsorption onto dry baker's yeast cells phosphorylated using sodium cyclo-triphosphate. Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy confirmed that the elemental composition of minerals were copper, phosphorus, and oxygen. Synchrotron-based X-ray absorption fine structure showed that the local structure around Cu atoms deposited on the mineral was almost identical to that of commercial copper (II) phosphate Cu3(PO4)2â3H2O. However, the crystallinity was low, and the structure was slightly distorted. Time profile analysis using FESEM revealed that copper phosphate mineralization was first apparent on Day 3 of adsorption, whereas mineral formation plateaued at around Day 7. It seems that mineralization occurs by the local saturation of phosphate and Cu2+ on the yeast cells. Mineralization of the rare earth ion Dy3+ was also demonstrated during long-term adsorption. Mineralization on phosphorylated yeast cells appears to follow a common path for various types of metal ions and provides a promising technique for metal recovery via irreversible adsorption.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Saccharomyces cerevisiae
/
Cobre
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Estados Unidos