Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.
Cell Rep
; 32(12): 108165, 2020 09 22.
Article
en En
| MEDLINE
| ID: mdl-32966790
Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Bacterias
/
Adaptación Fisiológica
/
Membrana Celular
/
Lipidómica
Idioma:
En
Revista:
Cell Rep
Año:
2020
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Estados Unidos