Your browser doesn't support javascript.
loading
Semihollow Core-Shell Nanoparticles with Porous SiO2 Shells Encapsulating Elemental Sulfur for Lithium-Sulfur Batteries.
Liu, Tingting; Zhang, Ye; Li, Chien-Hung; Marquez, Maria D; Tran, Hung-Vu; Robles Hernández, Francisco C; Yao, Yan; Lee, T Randall.
Afiliación
  • Liu T; Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
  • Zhang Y; Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States.
  • Li CH; Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.
  • Marquez MD; Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States.
  • Tran HV; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
  • Robles Hernández FC; Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
  • Yao Y; Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States.
  • Lee TR; Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
ACS Appl Mater Interfaces ; 12(42): 47368-47376, 2020 Oct 21.
Article en En | MEDLINE | ID: mdl-32930564
Lithium-sulfur batteries have shown great promise as next-generation high energy density power sources, but their commercial applications are hindered by short battery cycle life arising from the dissolution and shuttling of polysulfides. To address this shortcoming, we prepared two types of semihollow core-shell nanoparticles in which (1) elemental sulfur is encapsulated within a porous silica shell (S@SiO2) and (2) elemental sulfur is encapsulated within a porous silica shell where the inner surface of the shell is decorated with small Au nanoparticles (S@Au@SiO2). These core-shell nanoparticles, both ∼300 nm in diameter, were generated from analogous zinc sulfide-based core-shell nanoparticles (ZnS@SiO2 and ZnS@Au@SiO2, respectively) by converting the ZnS cores to elemental sulfur upon treatment with Fe(NO3)3. With a high surface area and strong host-polysulfide interaction, the SiO2 shells effectively trap the polysulfides; moreover, the internal void space of these nanostructures accommodates the volume expansion of the sulfur core upon lithiation. By decorating ∼5-7 nm Au nanoparticles evenly on the inner surface of the porous SiO2 shells (i.e., S@Au@SiO2), electron transport is enhanced, with consequently enhanced sulfur conversion kinetics at high current rates. Studies of battery performance showed that the S@SiO2 cathode can deliver an initial capacity of 1153 mA h g-1 under 0.2 C and retain 816 mA h g-1 after 100 cycles. More importantly, the Au-decorated S@Au@SiO2 cathode can deliver a high capacity of 500 mA h g-1 under 5 C.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos