Classification of parotid gland tumors by using multimodal MRI and deep learning.
NMR Biomed
; 34(1): e4408, 2021 01.
Article
en En
| MEDLINE
| ID: mdl-32886955
Various MRI sequences have shown their potential to discriminate parotid gland tumors, including but not limited to T2 -weighted, postcontrast T1 -weighted, and diffusion-weighted images. In this study, we present a fully automatic system for the diagnosis of parotid gland tumors by using deep learning methods trained on multimodal MRI images. We used a two-dimensional convolution neural network, U-Net, to segment and classify parotid gland tumors. The U-Net model was trained with transfer learning, and a specific design of the batch distribution optimized the model accuracy. We also selected five combinations of MRI contrasts as the input data of the neural network and compared the classification accuracy of parotid gland tumors. The results indicated that the deep learning model with diffusion-related parameters performed better than those with structural MR images. The performance results (n = 85) of the diffusion-based model were as follows: accuracy of 0.81, 0.76, and 0.71, sensitivity of 0.83, 0.63, and 0.33, and specificity of 0.80, 0.84, and 0.87 for Warthin tumors, pleomorphic adenomas, and malignant tumors, respectively. Combining diffusion-weighted and contrast-enhanced T1 -weighted images did not improve the prediction accuracy. In summary, the proposed deep learning model could classify Warthin tumor and pleomorphic adenoma tumor but not malignant tumor.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Glándula Parótida
/
Neoplasias de la Parótida
/
Imagen por Resonancia Magnética
/
Aprendizaje Profundo
Tipo de estudio:
Prognostic_studies
Límite:
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
NMR Biomed
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
/
MEDICINA NUCLEAR
Año:
2021
Tipo del documento:
Article
País de afiliación:
Taiwán
Pais de publicación:
Reino Unido