Direct Observation of the Reduction of a Molecule on Nitrogen Pairs in Doped Graphene.
Nano Lett
; 20(9): 6908-6913, 2020 Sep 09.
Article
en En
| MEDLINE
| ID: mdl-32830982
Incorporating functional atomic sites in graphene is essential for realizing advanced two-dimensional materials. Doping graphene with nitrogen offers the opportunity to tune its chemical activity with significant charge redistribution occurring between molecules and substrate. The necessary atomic scale understanding of how this depends on the spatial distribution of dopants, as well as their positions relative to the molecule, can be provided by scanning tunneling microscopy. Here we show that a noncovalently bonded molecule such as CoPc undergoes a variable charge transfer when placed on N-doped graphene; on a nitrogen pair, it undergoes a redox reaction with an integral charge transfer whereas a lower fractional charge transfer occurs over a single nitrogen. Thus, the charge state of molecules can be tuned by suitably tailoring the conformation of dopant atoms.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2020
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Estados Unidos